Deep Residual Learning for Channel Estimation in Intelligent Reflecting Surface-Assisted Multi-User Communications

نویسندگان

چکیده

Channel estimation is one of the main tasks in realizing practical intelligent reflecting surface-assisted multi-user communication (IRS-MUC) systems. However, different from traditional systems, an IRS-MUC system generally involves a cascaded channel with sophisticated statistical distribution. In this case, optimal minimum mean square error (MMSE) estimator requires calculation multidimensional integration which intractable to be implemented practice. To further improve performance, paper, we model as denoising problem and adopt deep residual learning (DReL) approach implicitly learn noise for recovering coefficients noisy pilot-based observations. end, first develop versatile DReL-based framework where network (DRN)-based MMSE derived terms Bayesian philosophy. As realization developed DReL framework, convolutional neural (CNN)-based DRN (CDRN) then proposed CNN block equipped element-wise subtraction structure specifically designed exploit both spatial features matrices additive nature simultaneously. particular, explicit expression CDRN analyzed characterize its properties theoretically. Finally, simulation results demonstrate that performance method approaches requiring availability prior probability density function channel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Algorithm Assisted Channel Estimation for Multi-user Communication Systems

A novel multiuser code division multiple access (CDMA) channel estimator based on genetic algorithm is considered which estimates the fading channel impulse response coefficients of all the users. Furthermore, the optimum multiuser detector, based on the maximum likelihood (ML) rule, is developed in order to identify the transmitted data sequence. As is demonstrated in simulation results, the p...

متن کامل

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Blind Channel Estimation for Multi-user CDMA Systems

Blind identiication of digital communication channels has recently attracted a signiicant amount of attention. In this work, subspace-based methods are considered speciically for Direct-Sequence/Code-Division Multiple-Access (DS/CDMA) signals in an asynchronous, multipath, multiuser environment. The objective is to reduce the complexity of previously proposed methods by exploiting the propertie...

متن کامل

Uplink Channel Estimation for Multi-user OFDM-based Systems

In this paper we propose a simple, yet flexible and efficient, channel estimator for the uplink in broadband Orthogonal Frequency Division Multiplexing (OFDM) systems. The processing is performed in the time-domain, by extracting the channel’s impulse response (CIR) for each user from a joint training signal. In this OFDM system, the pilot sequence we advocate, where all users share the same pi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Wireless Communications

سال: 2022

ISSN: ['1536-1276', '1558-2248']

DOI: https://doi.org/10.1109/twc.2021.3100148